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Abstract: The classical method of quantitative structure-activity relationships (QSAR) is 

enriched using non-linear models, as Thom’s polynomials allow either uni- or bi-variate 

structural parameters. In this context, catastrophe QSAR algorithms are applied to the  

anti-HIV-1 activity of pyridinone derivatives. This requires calculation of the so-called 

relative statistical power and of its minimum principle in various QSAR models. A new 

index, known as a statistical relative power, is constructed as an Euclidian measure for the 

combined ratio of the Pearson correlation to algebraic correlation, with normalized  

t-Student and the Fisher tests. First and second order inter-model paths are considered for 

mono-variate catastrophes, whereas for bi-variate catastrophes the direct minimum path is 

provided, allowing the QSAR models to be tested for predictive purposes. At this stage, the  

max-to-min hierarchies of the tested models allow the interaction mechanism to be 

identified using structural parameter succession and the typical catastrophes involved. 

Minimized differences between these catastrophe models in the common structurally 

influential domains that span both the trial and tested compounds identify the “optimal 

molecular structural domains” and the molecules with the best output with respect to the 

modeled activity, which in this case is human immunodeficiency virus type 1 HIV-1 
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inhibition. The best molecules are characterized by hydrophobic interactions with the  

HIV-1 p66 subunit protein, and they concur with those identified in other 3D-QSAR 

analyses. Moreover, the importance of aromatic ring stacking interactions for increasing the 

binding affinity of the inhibitor-reverse transcriptase ligand-substrate complex is highlighted. 

Keywords: Thom’s catastrophe polynomials; statistical factors; minimum statistical paths; 

QSAR structural domains; HIV-1 inhibitory activity 

 

1. Introduction 

Among the mathematical theories that model open-system dynamics, Thom’s theory of catastrophes 

has acquired much popularity for its simple yet valuable description of the system-environment 

interaction that includes phenomena such as steady state equilibrium and life cycles [1]. In particular, 

biological systems come first under catastrophe modeling because they display a causal action-reaction 

response to various natural or imposed constraining limits. As an example, the reactions of organisms 

to vital toxicological threats were developed into the survival attractor concept by employing butterfly 

bifurcation phenomenology, which is closely related to the cusp catastrophe, thus revealing the close 

connection with the turning points around singularity points of the fundamental central field laws of 

attraction [2]. The cusp catastrophe was further implemented in the physiological processes of 

predation and generation, thus giving mathematical support to Heidegger’s philosophical concept of 

entity and having the major consequence of translating the ontological entities into computer  

language [3]. Following this line of application, Jungian psychology entered the topological  

approach phase through modeling personal unconscious and conscious states using the swallowtail 

catastrophe [4]. As a consequence, neuro-self-organization was advanced by reduction to cusp 

synergetics as an archetypal precursor of epileptic seizures [5]. Nevertheless, in chemistry the 

catastrophe approach enters through the need to unitarily characterize elementary processes such as 

chemical bonding, leading to the so-called bonding evolution theory and reformulation of the electronic 

localization functions [6,7]. In the last decade, catastrophe theory was successfully grounded on 

Hilbert space modeling with the density matrix and non-linear evolution as specific tools for the  

non-commutative (quantum) systems [8]. At this point, the interesting connection with the linear 

superposition of quantum states may be generalized in a non-linear manner with direct correspondence 

for widespread quantitative structure-activity relationship (QSAR) treatments of the “birth and death 

of an organism”.  

In this context, the present contribution provides in silico assistance to clinical efforts in current 

antiretroviral therapy by contributing to the development of a given class of actual anti-HIV-1 

compounds and identifying their viral inhibitory mechanisms and influential structural factors. 

Continuous efforts both in theory and in clinical practice are made to provide new and valid data for 

HIV infection management. Note that acquired immunodeficiency deficiency syndrome (AIDS) was 

first recognized in 1981. Only 25 compounds have been approved for use in HIV infected patients, and 

they are distributed among several classes of antiretroviral drug types [9,10]: nucleoside reverse 

transcriptase inhibitors (NRTIs); nucleotide reverse transcriptase inhibitors (NtRTIs); non-nucleoside 
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reverse transcriptase inhibitors (NNRTIs); protease inhibitors (PIs); cell entry (or fusion) inhibitors 

(FIs); co-receptor inhibitors (CRIs); and integrase inhibitors (INIs). Among these, it is well known that 

most NNRTIs have a low genetic barrier to resistance, i.e., high viral resistance may be induced by a 

single mutation at the NNRTI binding site [11]. It is this particular feature that makes NNRTIs so well 

adapted for a comprehensive catastrophe theory application. Although NNRTIs are an open battlefield 

for research, being highly active in naïve and drug-resistant HIV infected patients [12], QSAR 

methods are cost-effective approaches to developing new and potent molecules with increased  

anti-HIV activity [13–23]. As a viable alternative to the available 3D-QSARs, the present endeavor 

makes the first steps toward generalizing multi-linear QSAR to non-linear catastrophe QSAR analysis 

and toward providing a conceptual-computational framework in which both the interactions occurring 

between the pyridinone derivatives and the NNRTI binding site and the structural domains influential 

for HIV-1 RT inhibitory activity are accounted for [24]. 

2. Background Theories 

2.1. QSAR Phenomenology 

The fundamental problem of structure-activity analysis may be described as follows: given a 

congener set of N-compounds/molecules with measured/observed activity (A) one searches for the best 

correlation of it with the structural (intrinsic, internal) molecular information quantified by  

M-properties (such as hydrophobicity, polarization, total energy), classically presented in multi-linear 

form [25–31]: 

MMkk XbXbXbbY  ......110  (1)

Equation (1) has some basic features, namely: 

 Y stands for the computed activity, not the observed activity, from the statistical characteristics of 

the present approach; thus the validation of Equation (1) should be done for another (preferably 

external or testing) set of compounds with which the predictive power of Equation (1) is tested.  

 Because the right side of Equation (1) unfolds as a linear summation of the structural 

characteristics, it corresponds in fact with the quantum superposition principle, which provides a 

global Eigen-solution for a quantum system from its particular realization in orthogonal or 

projective sub-space; from where the need arises for structural indices X1, ..., XM to be either 

linearly independent or orthogonal in algebraic space built from their associate vectors presented 

in Table 1.  

Table 1. The QSAR working table for Equation (1) in the presence of M-structural 

descriptors for N-compounds with known activities. 

Observed Activity Structural Predictor Variables 
A X1 … Xk … XM 
A1 x11 … x1k … x1M 
A2 x21 … x2k … x2M 
            

AN xN1 … xNk … xNM 
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However, in order for the chemical structure be correlated with bio-, eco-, or pharmacological 

activity in an analytical manner (from where the name Quantitative Structure-Activity Relationship 

arises) that has sense for the ligand-receptor interaction under study, the Organization for Economic 

Cooperation and Development (OECD) developed the so-called QSAR-OECD principles, which have 

already been adopted by the EU Parliament as the official guidelines for further regulation of 

compounds in the European Union. They are, in short [32]: 

 QSAR 1: a defined endpoint 

 QSAR-2: an unambiguous algorithm 

 QSAR-3: a defined domain of applicability 

 QSAR-4: appropriate measures of goodness-of–fit, robustness and predictivity 

 QSAR-5: a mechanistic interpretation, if possible 

Put differently, they express the essence of the chemical modeling of biological effects while 

relaying (Husserl-Russell) knowledge phenomenology in a more general manner [33]: 

 QSAR-1. why does one do modeling ? 

 QSAR-2. how does one do modeling ? 

 QSAR-3. with what tools do I model ? 

 QSAR-4. how reliable is what I modeled ? 

 QSAR-5. what knowledge did the model provide ? 

Therefore, although the backbone of QSAR modeling is based on equation (1), one should be aware 

that it represents, despite the innumerable extant studies, only one type of model—the  

multi-linear type. It is therefore worth refreshing QSAR studies by exploring other ways of combining 

the structural parameters that cause the observed biological activity. However, although it is clear that 

non-linear QSAR is the next generation of correlations, one should not search arbitrarily or randomly 

while having at hand a well-designed theory of non-linear modeling of natural phenomena: Thom’s 

catastrophe theory, the basic assumptions and main working tools of which are presented next.  

2.2. Thom’s Catastrophe Theory 

René Thom’s catastrophe theory basically describes how, for a given system, continuous action on 

the control space (Ck), parameterized by Ck’s, provides a sudden change in its behavior space (Im), 

described by xm variables through stable singularities of the smooth map [34,35] 

   mk
mk ICxc :,  (2)

with η(ck, xm) called the generic potential of the system. Therefore, catastrophes are given by the set of 

critical points (ck, xm) for which the field gradient of the generic potential vanishes 

 0),(),( 
mkx

mk
mk

mk xcICxcM
m
  (3)

or, more rigorously: a catastrophe is a singularity of the map Mkm → Ck.  

Next, depending on the number of parameters in space Ck (also called the co-dimension, k) and on 

the number of variables in space Im (also called the co-rank, m), Thom classified the generic potentials 

(or maps) given by Equation (2) as seven unfolding elementary (in the sense of universal) 
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catastrophes, i.e., providing the multi-variable (with the co-rank up to two) and multi-parametrical 

(with the co-dimension up to four) polynomials listed in Table 2. Going to the higher derivatives of the 

generic potential (the fields), the control parameter ck* for which the Laplacian of the generic  

potential vanishes 

Δxη(ck*, xm) = 0 (4)

gives the bifurcation point. Consequently, the set of control parameters c# for which the Laplacian of a 

critical point is non-zero defines the domain of stability of the critical point. It is clear now that small 

perturbations of η(c*, x) bring the system from one domain of stability to another; otherwise, the 

system is located within a domain of structural stability.  

Table 2. Thom’s Classification of Elementary Catastrophes [36,37]. 

Name 
Co-

dimension 
Co-
rank 

Universal unfolding 
Parametric 

Representation 

Fold 1 1 uxx 3  

Cusp 2 1 vxuxx  24  

Swallow tail 3 1 wxvxuxx  235  

Butterfly 4 1 txwxvxuxx  2346  
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Table 2. Cont. 

Hyperbolic 

umbilic 
3 2 wyvxuxyyx  33  

Elliptic 

umbilic 
3 2 wyvxyxuxyx  )( 2223  

Parabolic 

umbilic 
4 2 tywxvyuxyyx  2242  

Remarkably, the cases described above correspond to the equilibrium limit of the dynamical  

(non-equilibrium) evolution of an open system 

0,...
);(

);;(;; 










t

xc
xctcF mk

mkk


  (5)

where the behavior space is further parameterized by the temporal paths xm(ck, t). The connection with 

equilibrium is recovered through the stationary time regime imposed on the critical points. In this way, 

the set of points giving a critical point in the stationary t  regime (the so-called ω-limit) 

corresponds to an attractor, and it forms a basin, whereas the stationary regime t  (the so-called 

α-limit) describes a repellor. In this way, the catastrophe polynomials may be regarded either as an 

asymptotic solution of a dynamical evolutionary system or as a steady state solution allowing the  

quasi-equilibrium of the ligand-receptor or inhibitor-organism interactions to be described. However, 

in complex binding systems with multiple evolutionary phases, e.g., the HIV-1 life cycle, the 

possibility of “linking” the various classes of catastrophes themselves may provide a striking analytical 

approach to the dynamics and mutational sensitivity of the studied interaction that starts with the 

actual catastrophe-QSAR method.  
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3. Catastrophe-QSAR Method 

Aiming to construct a QSAR rationale from the elementary catastrophes, the next steps  

are implemented:  

i. Assuming the vectorial form of activities and of associated QSARs are according to Table 2, 

Table 3 showing catastrophe-QSAR is thereby formed. 

Table 3. Algebraic realization of Thom’s elementary catastrophes as uni- and bi- nonlinear 

QSARs. The systematics of the sub-indices indicate consecutive coupled pairs, where each 

pair is interpreted as: the index of a structural factor followed by its power.  

Model QSAR Equation 
GROUP I: with one descriptor only, 1X  

QSAR-(I) 1110 1 XaaYI   

Fold 
3
1131110 1 XfXffYF   

Cusp 
4
114

2
1121110 1 XcXcXccYC   

Swallow tail 
5
115

3
113

2
1121110 1 XsXsXsXssYST   

Butterfly 
6
116

4
114

3
113

2
1121110 1 XbXbXbXbXbbYB   

GROUP II: with two descriptors, 1X , 2X  

QSAR- (II) 2211110 1 XqXqqYII   

Hyperbolic 
umbilic 

3
223

3
1132111212211110 1 XhXhXXhXhXhhYHU   

Elliptic umbilic 
3
113

2
211122

2
222

2
1122211110 1 XeXXeXeXeXeXeeYEU   

Parabolic 
umbilic 

4
2242

2
11221

2
222

2
1122211110 1 XpXXpXpXpXpXppYPU   

ii. Determine the norms for each model  





N

i
iyYYY

1

2  (6)

iii. Calculate the algebraic correlation factor for each model [31] 








N

i
i

N

i
i

ALG

A

y

A

Y
R

1

2

1

2

 (7)

iv. Calculate the so-called “statistical relative power” index for each model with each set  

of descriptors 

222 ftr   (8)
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where the components are defined as follows: 

 relative index of correlation: 

Pearson

ALG

R

R
r   (9)

 relative index for Student’s t-test 

)2
;99.01(






MN

Tabulated

Computed

t

t
t



 
(10)

 relative index for Fisher’s test 

)1,
;99.01(






MNM

Tabulated

Computed

F

F
f



 
(11)

v. Determine the generalized Euclidian distances between corresponding type-I and type-II models 

employing different descriptors 

     222 ''' ffttrr   (12)

and establish formal matrices for the models’ differences for single descriptors, respectively 

)()(),(
2

2121 XIXIXXI   (13)

where 
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 (14)

and for pair descriptors 
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vi. Identify all minimum paths across all differences )( 21 XXI  , ),(
2

21 XXI  and  21 XXII   for a 

given set of descriptors ),( 21 XX  
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The combination of descriptors that fulfills this system provides the molecular mechanism of the 

interaction. The correlation models involved are ordered according to their relative statistical power 

within the same molecular mechanism, thereby providing the best models. Because pair-descriptors are 

primarily involved in the present analysis, one can consider the first two such “waves” and their best 

correlation models up to the second order minimum paths, as in Equation (16). 

vii. For selected correlation models, in either structure-driven or molecular mechanistic “waves,” one 

employs them to compute the associated predicted activities for test molecules and to provide the 

statistics regarding the observed activity. If the obtained relative statistical power is close to those 

characteristic for the trial set of molecules, then these models may be validated for the specific 

eco-, bio-, or pharmacological problem. Moreover, further insight will be provided by the analysis 

of the catastrophe shape of the models involved and discussed accordingly.  

Nevertheless, more Catastrophe Theory insights and the natural consequence on statistical (Pearson) 

correlation behavior may be found in Appendix. 

4. Application to Non-Nucleoside Reverse Transcriptase Pyridinone Inhibitors 

4.1. Input Data 

As a working molecular series, the interesting series of pyridinone derivatives in Table 4 is herein 

employed [24] because of their potential for improving and complementing the currently available four 

NNRTIs that have been approved by the U.S. FDA for HIV/AIDS treatment (Nevirapine-Viramune®, 

Delavirdine-Rescriptor®, Efavirenz-Sustiva®, Etravirine-Intelence®), all of which bind to the 

hydrophobic pocket of HIV-1 reverse transcriptase [38]. The pyridinone derivatives were divided into 

a training set of 23 compounds and a test set of 9 compounds according to the methods of 

normal/Gaussian (G) and non-normal/non-Gaussian (NG) fitted activity [39–41] (Figure 1).  

Figure 1. Gaussian (G) and non-Gaussian (NG) screening of the observed activities of the 

working molecules in Table 4 grouped into trial and test congener series. 

Trial Set

Test Set

Trial and Test Molecules

A

G1

G2

G3

G4

G5

G6

G7
G8

G9

G10

G11G12
G13

G14

G15
G16

G17

G18

G19

G20

G21

G22

G23

NG1
NG2

NG3

NG4

NG5
NG6NG7NG8

NG9

3.5

4.5

5.5

6.5

7.5

8.5
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Table 4. Actual working reverse transcriptase pyridinone inhibitors grouped in Gaussian (G) and non-Gaussian (NG) molecular congeneric 

sets with their structural information (hydrophobicity, Log P; molecular polarizability POL [Å3] and total optimized energy of formation  

H [kcal/mol]) computed upon the semi-empirical PM3 method [42], along with their observed activity A = Log (1/IC50) [24]. 

No. Type
WORKING MOLECULES Aobs QSAR parameters 

Structure Name Log (1/IC50) Log P POL (Å3) H (kcal/mol) 

1. G1 
O

N

H

H

H
H

N
H

O

N
H

3-{[(6’-azabenzofuran-2’-

yl) methyl]amino}-5-ethyl-

6-methylpyridin-2(1H)-one

3.98 −0.54 31.21 −14.67 

2. G2 
O

N

H

H
H

N
H

O

N
H

3-{[(5’-azabenzofuran-2’-

yl) methyl]amino}-5-ethyl-

6-methylpyridin-2(1H)-one

4.49 −0.54 31.21 −16.195 

3. G3 
N

N

O
H

H N

3-{[(pyridine-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

4.82 0.21 27.87 -5.854 

4. G4 
N

N

OH

H

3-benzylamino-5-ethyl-6-

methylpyridin-2(1H)-one 
5.27 0.67 28.58 −11.659 
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Table 4. Cont. 

No. Type
WORKING MOLECULES Aobs QSAR parameters 

Structure Name Log (1/IC50) Log P POL (Å3) H (kcal/mol) 

5. G5 

N N

O

H H

N

O

3-{[(1’,3’-naftoxazol-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

5.57 1.20 38.48 −1.878 

6. G6 
N

N
H

O

H
O

O

3-{[(1’-benzopyran-4’-one-

3’-yl) methyl]amino}-5-

ethyl-6-methylpyridin-

2(1H)-one 

5.96 −0.71 33.84 −61.455 

7. G7 N N

O

H H

N

3-{[(benzopyridine-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

6.28 1.16 35.14 11.246 

8. G8 
N

N

O
H

H

N

S

3-{[(1’,3’-benzothiazole-

2’-yl) methyl]amino}-5-

ethyl-6-methylpyridin-

2(1H)-one 

6.46 0.54 33.57 17.808 
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Table 4. Cont. 

No. Type
WORKING MOLECULES Aobs QSAR parameters 

Structure Name Log (1/IC50) Log P POL (Å3) H (kcal/mol) 

9. G9 

N

N
H

O

H

H

N

O

3-{[(4’-methyl-

benzoxazole-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

6.92 0.67 33.05 −27.613 

10. G10 

N

N
H

O

H

H

O

Cl

Cl

3-{[(4’,7’-dichloro-

benzofuran-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

7.24 0.88 35.78 −33.749 

11. G11 N

O

N O

N
H 3-{[(4’,7’-dimethyl-

benzoxazol-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

7.7 1.13 34.88 −38.048 

12. G12 N

O

Cl

Cl

N O

N
H 3-{[(4’,7’-dichloro-

benzoxazol-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

7.72 1.24 35.07 −30.071 
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Table 4. Cont. 

No. Type 
WORKING MOLECULES Aobs QSAR parameters 

Structure Name Log (1/IC50) Log P POL (Å3) H (kcal/mol) 

13. G13 N

O

N O

3-[(4’,7’-dimethyl-

benzoxazol-2’-yl) ethyl]-5-

ethyl-6-methylpyridin-

2(1H)-one 

7.55 2.62 35.37 −47.701 

14. G14 
N

O

N O  

3-[(4’,5’,6’,7’-tetrahydro-

benzoxazole-2’-yl) ethyl]-

5-ethyl-6-methylpyridin-

2(1H)-one 

7.24 −0.02 32.08 −63.299 

15. G15 

N

O

O

N O

N
H

CH3
3-{[(4’-methoxy-

benzoxazole-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

6.74 −0.05 33.68 −54.452 

16. G16 
N

O

N O

N
H

 

3-[(4’,5’,6’,7’-tetrahydro-

benzoxazole-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

6.55 −1.50 31.59 −50.643 

17. G17 

N

N

OH

H

S 3-{[(benzothiophene-2’-yl) 

methyl] amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

6.30 0.19 34.28 11.703 
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Table 4. Cont. 

No. Type
WORKING MOLECULES Aobs QSAR parameters 

Structure Name Log (1/IC50) Log P POL (Å3) H (kcal/mol) 

18. G18 N

O

N O

N
H

 

3-{[(5’-

methylbenzoxazole-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

5.90 0.67 33.05 −27.741 

19. G19 

N

O

H

N

3-[(benzopyridine-2’-yl) 

ethyl]5-ethyl-6-

methylpyridin-2(1H)-one 

5.61 2.71 35.62 3.331 

20. G20 

N
H

N O

N
H 3-{[(indol-2’-yl) methyl] 

amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

5.36 −0.34 32.63 4.727 

21. G21 
N

N

O

H

H

N

N
H

3-{[(quinazolin-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

5.12 0.02 31.92 8.171 

22. G22 
N

N

O

H

H

N H

3-{[(indol-3’-yl)methyl] 

amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

4.65 −0.43 32.63 2.957 
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Table 4. Cont. 

No. Type
WORKING MOLECULES Aobs QSAR parameters 

Structure Name Log (1/IC50) Log P POL (Å3) H (kcal/mol) 

23. G23 
N

O
H

3-(β-phenilethyl)-5-ethyl-

6-methylpyridin-2(1H)-one
4.30 2.36 29.06 −23.245 

24. NG1 

N

N

OH

H

N

N

O
H

3-{[(4’-quinozolone-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

5.60 −0.47 33.85 −36.959 

25. NG2 

N

N

OH

H

N

O

N

3-{[(3’,4’-

diazobenzofuran-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

5.72 0.05 30.50 -8.120 

26. NG3 

N

N

OH

H

N

O O H

3-{[(7’-hydroxy-

benzoxazole-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

6.36 −0.08 31.85 −62.189 

27. NG4 

N

OH

N

O Cl

Cl

3-[(4’,7’-dichloro-

benzoxazole-2’-yl) ethyl]-

5-ethyl-6-methylpyridin-

2(1H)-one 

7.85 2.72 35.55 −39.459 
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Table 4. Cont. 

No. Type
WORKING MOLECULES Aobs QSAR parameters 

Structure Name Log (1/IC50) Log P POL (Å3) H (kcal/mol) 

28. NG5 

N

N

OH

H

N

O

3-{[(7’-ethyl-

benzoxazole-2’-yl) 

methyl]amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

6.59 1.06 34.88 −34.478 

29. NG6 

N

O

H

N

O

3-[(5’-phenyl-oxazole-2’-

yl) ethyl]-5-ethyl-6-

methylpyridin-2(1H)-one 

6.41 0.96 35.17 −21.361 

30. NG7 

N

O

H

N

S

3-[(benzothiazole-2’-yl) 

ethyl]-5-ethyl-6-

methylpyridin-2(1H)-one 

6.43 2.02 34.06 8.873 

31. NG8 
N

N

O

H

H 3-{[(2’naphtyl) methyl] 

amino}-5-ethyl-6-

methylpyridin-2(1H)-one 

6.34 1.67 35.85 5.495 

32. NG9 
N

N
H

O

H N

O

3-{[(5’-phenyl-oxazole-

2’-yl) methyl]amino}-5-

ethyl-6-methylpyridin-

2(1H)-one 

5.63 −0.53 34.69 −10.850 
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4.2. Results and Discussion 

The catastrophe-QSAR algorithm of Section 3 was applied to the molecules of Table 4, and the trial results are presented in Tables 5–9.  

Table 5. Correlation equations for the Group-I models of Table 3 and the molecular structures and data of Table 4. 

Catastrophe QSAR Model RPearson
(a) RALG

(b) r(c) t-Stud. t(d) Fisher f(e)  (f) 

QSAR 

(I) 

LogP..Y LogP
I 240018615   0.228 0.984 4.317 22.344 7.854 1.150 0.143 8.963 

POL. .Y POL
I 249012572   0.554 0.989 1.784 −0.832 −0.292 9.284 1.158 2.147 

H..Y H
I 02101575   0.476 0.987 2.074 20.597 7.24 6.156 0.768 7.57 

Fold 

(F) 

31060738018545 LogP.LogP..Y LogP
F   0.382 0.986 2.581 22.936 8.062 1.705 0.213 8.468 

34103261120624 POLPOL..Y POL
F

  0.601 0.989 1.646 −1.422 −0.45 5.650 0.704 1.859 

36102016.0158.5 HHY H
F

  0.481 0.987 2.053 20.095 7.063 3.01 0.375 7.365 

Cusp 

(C) 

42 07103720426017075 LogP.LogP.LogP..Y LogP
C   0.348 0.985 2.832 16.120 5.666 0.872 0.109 6.335 

442 10833069435126431 POLPOL.POL..Y POL
C

  0.713 0.992 1.391 2.240 0.787 6.558 0.818 1.796 

462 100030042010065 HH.H..Y H
C

  0.764 0.993 1.300 19.802 6.960 8.864 1.105 7.166 

Swallow 

tail 

(ST) 

53

2

09309780

3260608116495

LogP.LogP.

LogP.LogP..Y LogP
ST




 0.575 0.989 1.720 18.665 6.561 2.222 0.277 6.788 

5632 105.507907915

07915612441476

POLPOL.POL.

POL..Y POL
ST




 0.715 0.992 1.387 0.45 0.158 4.708 0.587 1.515 

51035

2

104102.5

0040031018844

HH

H.H..Y H
ST

 


 0.763 0.993 1.302 15.608 5.486 6.263 0.781 5.692 
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Table 5. Cont. 

Catastrophe QSAR Model RPearson
(a) RALG

(b) r(c) t-Stud. t(d) Fisher f(e)  (f) 

Butterfly 

(B) 

643

2

027004106880

3030464116465

LogP.LogP.LogP.

LogP.LogP..Y LogP
B




 0.578 0.989 1.711 15.169 5.332 1.704 0.212 5.604 

6643

2

109.204700374

0941460492491182716485

POLPOL.POL.

POL.POL..Y POL
B




 0.718 0.992 1.382 −0.355 −0.125 3.619 0.451 1.459 

6104634

2

103.61067.7103.2

004.0110.01876.4

HHH

HHY H
B

 


 0.856 0.996 1.163 19.088 6.709 9.349 1.166 6.908 

(a) the statistical Pearson correlation factor; (b) computed from Equation (7); (c) computed from Equation (9); (d) computed from Equation (10) with 845.2
)20;99.0(
Tabulatedt ;  

(e) computed from Equation (11) with 02.8
)21,1;99.0(
TabulatedF ; (f) computed from Equation (8). 

Table 6. Correlation equations for the Group-II models of Table 3 and the molecular structures and data of Table 4. 

Catastrophe QSAR Model RPearson
(a) RALG

(b) r(c) t-Stud. t(d) Fisher f(e)  (f) 

QSAR 

(II) 

POL. LogP..Y LogP,POL
II 2420051010442   0.556 0.989 1.778 −0.702 −0.245 4.464 0.763 1.9504 

HLogP Y LogP,H
II 023.0304.01379.5   0.556 0.989 1.778 18.564 6.489 4.468 0.764 6.771 

HPOLY POL,H
II 021.0248.01637.2   0.728 0.992 1.363 −1.151 −0.402 11.302 1.932 2.398 
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Table 6. Cont. 

Catastrophe QSAR Model RPearson
(a) RALG

(b) r(c) t-Stud. t(d) Fisher f(e)  (f) 

Hyperbolic 

umbilic 

(HU) 

POL.LogP..Y LogP,POL
HU 04324632149939   

   343 10614501040 POLLogP.POLLogP.   
0.715 0.992 1.387 −2.215 −0.774 3.561 0.609 1.701 

HLogPY LogP,H
HU 002.0083.11319.5   

   363 109161.0003.0 HLogPHLogP   
0.736 0.992 1.3485 19.328 6.756 4.019 0.687 6.923 

HPOLY POL,H
HU 122.0766.01192.13   

   3734 101.5102004.0 HPOLHPOL    
0.755 0.993 1.315 −0.79 −0.276 4.503 0.770 1.549 

Elliptic 

umbilic 

(EU) 

POL.LogP..Y
A

LogP,POL
EU 53145560126269   

   32

22

32200020

06804430

LogP.POLLogP.

POL.LogP.




 

0.757 0.993 1.312 −2.548 −0.891 3.582 0.612 1.670 

POL.LogP..Y
B

LogP,POL
EU 9345902201623644   

   32

22

01900150

85514670

POL.LogPPOL.

POL.LogP.




 

0.722 0.992 1.374 1.866 0.652 2.908 0.497 1.600 

HLogPY
A

LogP,H
EU 025.0974.01022.5   

   324

22

359.01087.2

001.0530.0

LogPHLogP

HLogP






 
0.843 0.995 1.181 20.638 7.214 6.542 1.118 7.395 
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Table 6. Cont. 

Catastrophe QSAR Model RPearson
(a) RALG

(b) r(c) t-Stud. t(d) Fisher f(e)  (f) 

Elliptic 

umbilic 

(EU) 

HLogPY
B

LogP,H
EU 029.0643.01779.4   

   352

22

105001.0

004.0211.0

HLogPH

HLogP




 

0.851 0.995 1.170 17.047 5.958 7.015 1.199 6.189 

HPOL Y
A

POL,H
EU 02.0631.741822.807   

   324

22

023.0102

005.0291.2

POLHPOL

HPOL






 
0.857 0.996 1.162 3.124 1.092 7.346 1.256 2.029 

HPOLY
B

POL,H
EU 068.0562.01888.11   

   3525

22

104104

004.0011.0

HPOLH

HPOL

 


 

0.853 0.996 1.167 0.532 0.186 7.120 1.217 1.696 

Parabolic 

umbilic 

(PU) 

POLLogPY
A

LogP,POL
PU 256.39021.01915.474   

   442

22

10015.0

914.0454.0

POLPOLLogP 

POLLogP




 

0.722 0.992 1.374 1.817 0.635 2.905 0.497 1.593 

POLLogPY
B

LogP,POL
PU 444.4539.11522.67   

   42

22

115.0002.0

067.0573.0

LogPLogPPOL

POLLogP




 

0.703 0.992 1.411 −2.219 −0.776 2.611 0.446 1.671 
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Table 6. Cont. 

Catastrophe QSAR Model RPearson
(a) RALG

(b) r(c) t-Stud. t(d) Fisher f(e)  (f) 

Parabolic 

umbilic 

(PU) 

HLogPY
A

LogP,H
PU 041.0700.01852.4   

   462

22

10002.0

004.0240.0

HHLogP

HLogP




 

0.874 0.996 1.140 20.243 7.075 8.645 1.478 7.317 

HLogPY
B

LogP,H
PU 020.0552.0110.5   

   424

242

099.01093.1

1057.9460.0

LogPLogPH

HLogP








 
0.767 0.993 1.295 16.828 5.882 3.815 0.652 6.058 

HPOL  Y
A

POL,H
PU 069.0366.01876.8   

   4725

22

105.4107.3

003.0008.0

HHPOL

HPOL

 


 

0.841 0.995 1.183 0.386 0.135 6.447 1.102 1.623 

HPOLY
B

POL,H
PU 019.0906.481212.595   

   4424

232

1073.11049.1

105129.1

POLPOLH

HPOL








 

0.856 0.996 1.163 3.074 1.074 7.292 1.246 2.015 

(a) the statistical Pearson correlation factor; (b) computed from Equation (7); (c) computed from Equation (9); (d) computed from Equation (10) with 861.2
)19;99.0(
Tabulatedt ;  

(e) computed from Equation (11) with 85.5
)20,2;99.0(
TabulatedF ; (f) computed from Equation (8). 
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Table 7. Single-structure matrices of the Euclidean distances I  of the QSAR and catastrophe models’ relative statistics of Table 5 

employing Equation (12).  

Log P F C ST B 

QSAR 1.750 2.645 2.905 3.627 

F  2.411 1.732 2.865 

C   1.437 1.174 

ST    1.231 
 

 POL F C ST B 

QSAR 0.517 1.198 0.828 0.830 

F  1.317 0.717 0.524 

C   0.670 0.983 

ST    0.314 

 H F C ST B 

QSAR 0.431 0.89 1.916 1.127 

F  1.054 1.793 1.242 

C   1.509 0.292 

ST    1.29 

Table 8. Differences I2  between the single-structure matrices of the Euclidean distances in Table 7.  

|Log P ÷ POL| F C ST B 

QSAR 1.233 1.446 2.076 2.797 

F  1.094 1.015 2.341 

C   0.767 0.191 

ST    0.917 

|Log P ÷ H| F C ST B 

QSAR 1.32 1.755 0.988 2.501 

F  1.358 0.062 1.624 

C   0.072 0.882 

ST    0.059 

|POL ÷ H| F C ST B 

QSAR 0.086 0.309 1.088 0.297 

F  0.264 1.076 0.717 

C   0.839 0.691 

ST    0.976 

Table 9. Single-structure matrices of the Euclidean distances II  of the QSAR and catastrophe models’ relative statistics of Table 6 

employing Equation (12); note that for the degenerate models of Table 6 that one is employed that displays higher relative statistical  

power ( ).  

Log P^POL HU EU PU 

QSAR 0.675 0.810 1.005 

HU  0.139 1.414 

EU   1.531 
 

Log P^H HU EU PU 

QSAR 0.512 0.917 1.123 

HU  0.964 0.878 

EU   1.152 

POL^H HU EU PU 

QSAR 1.170 1.652 1.640 

HU  1.46 1.440 

EU   0.02 
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For the trial set of molecules from Figure 1 and Table 4, the results in Tables 5 and 6 can be 

interpreted as follows: 

- First, it is clear that consideration of the catastrophe (polynomial) correlations is an 

improvement over the old multi-linear QSAR statistics (see also Appendix-A2). 

- The hydrophobicity indicator gives generally low correlations with any polynomial (linear, 

multilinear or catastrophe) approach, being a quite irrelevant linear QSAR descriptor (Table 5) 

but improving up to twice its influence within the swallow tail and butterfly phenomenologies 

once its fifth and sixth power involvement are considered. Nevertheless, this provides a sign of 

the value of catastrophe-QSAR for achieving a deeper understanding of the molecular 

mechanics of specific interactions when the normal multi-linear QSAR does not assign 

transport descriptors with much predictive power.  

- The relative statistical power, as defined by Equation (8), does not always parallel the Pearson 

coefficient or the relative correlation factors, as is evident from Tables 5 and 6. However, 

because it includes more statistical information, we consider a model as relevant when it has 

greater individual output of this newly introduced statistical index. In particular, neither the 

linear nor the multilinear QSAR framework provides a good fit between the statistical 

correlation and the relative statistical power using the structural parameter combinations 

considered. Instead, parabolic catastrophe correlations, the cusp and butterfly models, are 

revealed to be quite relevant, in particular regarding the formation energy (H) for which they 

show the highest Pearson correlation and relative statistical power values in comparison with 

the other descriptors plugged into these models. Unfortunately, for the two-variable descriptor 

models of Table 6, no consistency was found between the highest Pearson value and the 

relative statistical power apart from a few degenerate cases of descriptors for the parabolic 

models where the highest relative statistical power value corresponds with the highest Pearson 

correlation. Note that for the degenerate cases of Table 6, when two mixed descriptors can be 

combined in two distinct ways, the working model is considered to have maximum relative 

statistical power.  

However, because the two-fold aim of the present research is to find the best predictive model and 

the molecular mechanism of action for the given set of molecules, the statistical indices of Tables 5 

and 6 are employed to compute the first- and second-order differences (or distances) in relative 

statistical power as described by Equations (12–15) of Section 3. They correspond to the  

inter-descriptor/inter-modeling paths of molecular actions, whose minimum values are identified 

according to the prescription of Equation (16). 

Through this minimal relative statistical power path recipe, once the models and descriptors 

predicted to be on the forefront of the structure-action interaction are selected, they are then further 

filtered with the testing set to finally identify the best predictive model and reveal the mechanism of 

action by means of the structural descriptors considered.  

In the present case of the HIV inhibitors in Table 4, the data computed from Tables 5 and 6 provide 

the results for Tables 7–9, to be discussed herein: 

- Table 7: At the individual descriptor level, the cusp and butterfly models are very close to each 

other for Log P and the forming energy H, which is even more relevant for the hydrophobicity, 
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because for the forming energy it transpires from Table 5 that the butterfly model practically 

reduces to the cusp model because the sixth contribution virtually vanishes. However, for the 

structural influence on polarizability (POL) the butterfly and swallow tail are the closest 

models. When one considers the hierarchy of the individual descriptors according to their 

QSAR-I models in Table 5 in terms of the reduction in relative statistical power 

Log P H POL   (17a)

through combining it with the catastrophes involved in Table 7, one correspondingly obtains the 

evolution cycle of the models: 

   ...][][][][...  lSwallowTaiButterflyCuspButterfly  (17b)

- Table 8: When the second order distance difference is considered between the individual inter-

modeling paths of Table 7, it can nevertheless be considered through the further variations of 

paths of Table 7. Also, the QSAR-I and the fold (F) catastrophe model intervene in changing 

the influence on specific interactions from POL to H. Therefore, by counting the minimum 

hierarchy of these paths, the distance ordering is obtained as follows: 

     LogPPOLPOLHHLogP   (18a)

which, remarkably, confirms the descriptors’ cycles of influence in accordance with the first order 

prescription of Equation (17a). However, a more detailed succession is recorded for the  

inter-model evolution:  

    ...][][][][][][... ButterflyCuspFoldIQSARlSwallowTaiButterfly (18b)

When comparing cycles (18b) with (17b), it seems that the QSAR-I and Fold models appear in (18b) at 

the second cycle after the first one is performed on the prescription of (17b). For this reason also, the 

direct second order inter-descriptor-inter-models analysis is undertaken, and the results are reported in 

Table 9, to be discussed hereafter.  

- Table 9: Interestingly, in terms of the two structural descriptors, the QSAR model is present 

even though its individual statistics are not the highest in Table 6; however, judging by the 

ordering of minimum paths recorded, the coupling descriptors hierarchy is established as: 

     & &   &H POL POL Log P Log P H   (19a)

which is associated with the models’ evolution 

    ]...[][][][][... PUQSARHUEUPU  (19b)

One should make “contact” between the descriptor hierarchies [(17a), (18a), (19a)] and the models’ 

cycles [(17b), (18b) and (19b)] by means of the predictivity powers of the models along the minimum 

paths identified in Tables 7 and 9 with the single and double descriptors, respectively, for the  

non-Gaussian (NG) molecules of Table 4 and Figure 1. The results are systematically presented in 

Tables 10 and 11. 
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Table 10. Predicted activity as computed for the non-Gaussian molecules of Table 4 with 

the models of Table 5 founded along the minimum paths of Table 7; for each predicted 

model, its correlation with the observed activity is indicated at the bottom of the table. 

Model 

Molecule 

LogP
CY  H

CY  POL
STY  LogP

BY  POL
BY  H

BY  

NG1 5.586 6.179 5.294 5.094 −20.595 5.687 

NG2 5.729 4.885 4.294 5.719 −9.764 4.360 

NG3 5.676 0.415 4.708 5.531 −13.457 −7.932 

NG4 5.729 6.156 5.149 6.657 −29.709 5.259 

NG5 6.487 6.141 5.309 6.705 −25.700 5.923 

NG6 6.399 5.438 5.258 6.708 −27.365 5.219 

NG7 6.903 5.631 5.319 5.311 −21.540 5.984 

NG8 6.904 5.334 5.027 5.995 −31.693 5.566 

NG9 5.580 4.9357 5.328 5.054 −24.666 4.383 

R-Pearson 0.195 0.129 0.174 0.701 0.488 0.026 

Table 11. Predicted activity as computed for the non-Gaussian molecules of Table 4 with 

the models of Table 6 founded along the minimum paths of Table 9; for each predicted 

model, its correlation with the observed activity is indicated at the bottom of the table. 

Model 

Molecule 

LogP,H
IIY  LogP,POL

HUY  LogP,H
HUY  

A

LogP,POL
EUY  

A

POL,H
EUY  

B

POL,H
PUY  

NG1 6.0865 5.918 5.308 5.387 5.351 7.210 

NG2 5.581 5.839 5.399 5.448 4.816 4.578 

NG3 6.785 6.132 7.526 5.686 1.423 7.234 

NG4 7.115 6.642 6.037 6.289 5.480 7.765 

NG5 6.495 7.382 6.853 7.277 6.033 7.629 

NG6 6.163 7.291 6.426 7.104 7.338 7.647 

NG7 5.790 7.388 6.087 7.615 6.879 6.547 

NG8 5.761 7.560 6.330 7.640 7.895 7.447 

NG9 5.467 5.755 4.786 5.177 7.586 7.303 

R-Pearson 0.778 0.468 0.454 0.431 0.057 0.451 

The results of correlation tests in Table 10 indicate the structure index–model activity hierarchy:  

LogP
BY > POL

BY > LogP
CY > POL

STY > H
CY > H

BY  (20)

Somehow the influences of POL and H are reversed relative to the prescription by trial succession 

of Equation (17a), revealing hydrophobicity as the main influential factor. However, due to the fact 

that the predicted activities of POL in Table 10 are all in the “opposite evolution direction” with 

respect to the activities recorded in Table 4, i.e., they are all negative, the uni-parametric tests and their 

associated hierarchy (20) are discarded, and one looks toward the second class of QSAR and  

catastrophe algorithms.  

Instead, the test correlations of Table 11 provide the structure-activity ordering for the  

bi-parameter-models 
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LogP,H
IIY >

LogP,POL
HUY >

LogP,H
HUY >

B

POL,H
PUY >

A

LogP,POL
EUY >

A

POL,H
EUY  (21)

Remarkably, the hierarchy (21) starts with the QSAR model, which is revealed to be at the top of 

the validated catastrophe models with statistical performance even higher than through the predicted 

equation of Table 6 and the trial set of Table 4. Moreover, the QSAR-II model involves parameters 

(Log P & H) that are followed by the hyperbolic umbilic (HU) model in terms of (Log P & POL) 

parameters, in this way recovering the original mono-structural influences as anticipated by  

Equations (17a) and (18a). Thus, the series of models in Equation (21) is validated, and it will be 

further employed to establish the models’ successions and the molecular structural pattern of inhibiting 

anti-HIV-1 drug resistance. To this end, apart from the first and last models of Equation (21), which 

are associated with the maximum (0.778) and minimum (0.057) test performance, the middle 

catastrophe models provide closely related performance in the range (0.431, 0.468). Their graphical 

3D-representation of the parametric domains Log P: (−1.50, 2.72), POL: (27.87, 38.48) and  

H: (−63.299, 17.808) of all (trial and test) structures in Table 4 are displayed in Figure 2. Next, it is 

apparent that they can be coupled according to the same spanned domains, thus forming the activity 
models’ differences LogP,H

HU
LogP,H

II YY  , 
A

LogP,POL
EU

LogP,POL
HU YY  , 

B

POL,H
PUA

POL,H
EU YY  , plotted in the top 

of Figure 3. Through registering the parameters and the models’ successions: 

][][][][ ,,, PUEUHUQSAR HPOLPOLLogPHLogP      (22)

one may reach the following important conceptual-computational conclusions: 

 The HIV-1 inhibitory activity is triggered by a hydrophobic interaction followed by energetic 

stabilization of the ligand/substrate (pyrididone derivative/viral protein) interaction here 

modeled by the heat of molecular formation and eventually completed by the ionic field 

influence herein represented by the polarizability descriptor. 

 Although the QSAR multi-linear model should not be excluded from the molecular modeling 

of complex bio-chemical interactions, it should be complemented with other polynomial 

correlational catastrophe-type models that produce significant results comparable to those of 

other 3D-modeling procedures such as docking-based comparative molecular field analysis 

(CoMFA) and comparative molecular similarity indices analysis (CoMSIA) [24].  

However, the issue remains of establishing the molecular structure most suitable for HIV-1 

inhibitory activity among the considered pool of pyridinone derivatives in Table 4. To this end, the 

representations in Figure 3 are synergistically employed to identify the molecular structural domains 

that optimally promote binding of the pyridine derivative to the hydrophobic pocket in the p66 subunit 

of HIV-1 through searching for joint fulfillment of the following structural parameters and inter-model 

evolutionary generic principles: 

 Log P: For positive values, the compound behaves hydrophobically and requires dissolution in 

an organic solvent; by contrast, for negative values the compound is hydrophilic and can be 

dissolved directly in an aqueous buffer. For Log P equal to 0, the compound partitions at a 1:1 

organic-to-aqueous phase ratio, meaning that it is likely soluble in both organic and aqueous 

solvents and in cellular environments; thus, values of Log P equal to or greater than zero are 
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selected to achieve hydrophobicity and suitability for the cellular environment [43,44], while 

characterizing the stacking bonding of aromatic rings [45];  

 H: Because the formation of a compound from its elements usually is an exothermic process, 

most heats of formation are negative, and this is also a characteristic of the dynamic 

equilibrium of ligand-substrate interactions [46]; note that the advantage of using heat of 

formation as QSAR descriptor resides in the following: it thermodynamically relates with the 
free energy ln eqG RT K    by the equilibrium constant eqK  which parallels the recorded 

activity at thermodynamic level [24]; it nevertheless expands the Gibbs free energy from the 

hydrogen to covalent bonding strength [45]; 

 PO: It is expected that “the natural direction of evolution of any system is towards a state of 

minimum polarizability” [47], while accounting for the dipolar interaction [45]; 

 Activity Models: Represent the same chemical-biological process providing their differences 

with respect to structural domains are minimized to zero. 

Figure 2. 3D-representations of the QSAR and catastrophe activities for the tested models 

of Table 11 in the range of the structural indicators (Log P, Pol, H) as abstracted from  

Table 4. 
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Figure 3. Determination of the structural domains of pyridinone-derivative type  

non-nucleoside reverse transcriptase inhibitors in the same range of structural descriptors 

by employing the principles of hydrophobicity, minimum polarizability, binding energy, 

and the minimum difference between the polynomial activity models of Figure 2; the 

hydrophobic pocket was identified in the p66 subunit of HIV-1-rt of specific transferase 

R221239 [48,49]. 

 

These principles are applied to the activity models’ differences at the top of Figure 3, and they lead 

to the identification of the structural domain (and even points) characteristic of the pyridinone 

derivative most well-adapted to inhibiting the HIV-1 life cycle. The graphical results in Figure 3 

suggest that the ordering of the structural indicators is: 

LogP,H
HU

LogP,H
II YY  : {Log P: (0,1.5) & H: (−55,−40) kcal/mol}  {Log P ≈ 2.5 & H ≈ −40 

kcal/mol} 
(23a)

A

LogP,POL
EU

LogP,POL
HU YY  : Log P ≈ 1 & POL ≈ 32 Ǻ3  (23b)

B

POL,H
PUA

POL,H
EU YY  : POL ≈ 34.5 Ǻ3; H ≈ −10 kcal/mol (23c)

The “solution” of system (23) gives the actual molecules in Table 4 predicted to be the most potent 

binding inhibitors, namely compounds 27 (Log P ≈ 2.72, H ≈ −39.459 kcal/mol, POL ≈ 35.55Ǻ3),  

28 (Log P ≈ 1.06, H ≈ −34.478kcal/mol, POL ≈ 34.88Ǻ3), and 29 (Log P ≈ 0.96,  

H ≈ −21.361 kcal/mol, POL ≈ 35.17Ǻ3). Most impressively, these molecules were also predicted by 

the much more sophisticated methods of CoMFA and CoMSIA as having increased binding affinity 

between the aromatic ring (or wing 2 of the pyridinone derivative) and amino acid Tyr181 of the first 

molecule and Tyr188 of the last two. These two amino acids are very important in the inhibition of RT 

by NNRTIs because the most common mutations are Tyr181Cys and Tyr188Cys, and they are 

responsible for the emergence of viruses resistant to pyridinone derivatives. Therefore, designing 
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pyridinone compounds that allow aromatic ring stacking interactions with Tyr181 and Tyr 188 may 

prevent these mutations and increase the activity of these anti-HIV drugs.  

Overall, the QSAR presented here combined with catastrophe polynomial structure activity 

relationships provides a reliable conceptual and computational tool for identifying the mechanisms 

underlying ligand-subtract interactions and the structural domains best able to promote them. 

Consequently, this method should be further integrated into automated data processing and tested on 

other complex open systems with bio- or eco-toxicological relevance, especially where evolutionary 

life-cycles are present.  

5. Conclusions 

One of the most challenging battlefields in metabolic virology focuses on the complete and 

sustained inhibition of the HIV life cycle at its various levels. Thus: “an ideal anti-HIV agent should 

stop the virus’ progress and also the infection of healthy host cells, with no toxicity against normal cell 

physiology” [50]. Moreover, the ideal anti-HIV agent should avoid the drug-resistance phenomenon of 

HIV mutant variants. QSAR techniques are cost-effective computer-assisted drug design methods that 

can be used to obtain potential anti-HIV compounds with powerful biological effects and the lowest 

possible levels of side-effects and toxicity. 

As the predictive roles of modeling and quantitative-structure-activity relationships (QSAR) in 

medicinal chemistry and drug synthesis are now recognized [51,52], thereby corroborating recent 

intriguing reports on the modest performance of direct statistical multilinear correlations in genotoxic 

carcinogenesis modeling of covalent drug binding to DNA followed by mutagenesis [53], the present 

study advances the idea of non-linear polynomial fits of observed/experimentally available 
 21, XXfActivity  , with X1, X2 being structural physicochemical parameters (usually 

hydrophobicity, polarizability and/or forming heat energy in accordance with the basic recommendation 

of Hansch) [54] under the seven polynomial forms inspired by Thom’s catastrophe theory [1]  

(see Table 3). 

As an application of the emerging catastrophe-QSAR analysis to a recently reported set of 

pyridinone derivatives with non-nucleoside reverse transcriptase inhibitor activity, [24] all the modeling 

stages required by the OECD-QSAR principles [32] are implemented here in a synergistic  

manner, namely:  

(i) A defined endpoint: The hydrophobic binding of the inhibitor in the pocket of the p66 subunit 

of reverse-transcriptase was confirmed herein through the identification of hydrophobicity as 

the major influence among all the mono-nonlinear catastrophes employed; see Equation (17).  

(ii) An unambiguous algorithm: The Spectral-SAR minimum path principle [31,55–57] is here 

generalized to include relevant combination of statistical information (e.g., the correlation 

factor R, Student’s t-test, Fischer’s F-test) to provide an equal footing multi-dimensional Euler 

distance [see Equations (8–16)], thus avoiding the previously identified discrepancy in judging 

the mid-range performance in terms of correlation or other statistical factors [56].  

(iii) A defined domain of applicability: By performing linear vs. non-linear QSARs, the present 

strategy allows for the identification of recommended applicable structural domains through 

setting their difference to zero via inter-model activity minimization, which is equivalent to 
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assuring the “smoothness” of the inhibitor-protein binding evolution towards the final steric 

inhibition output.  

(iv) Appropriate measures of goodness-of-fit, robustness and predictivity: The trial results were 

evaluated by external validation employing a testing set, which was selected by means of 

Gaussian vs. non-Gaussian distributions of the compounds’ activities, an improvement over the 

earlier arbitrariness of sampling the compounds only within a certain activity range. For 

instance, for linear QSAR the predicted correlation was superior to the tested correlation, thus 

confirming the reliability of this validation technique. 

(v) A mechanistic interpretation: The selected succession of catastrophe-QSARs indicates that the 

inhibitor-HIV protein binding mutations that are involved in “birth and death” processes are 

associated with “waves” of induced activity in certain structural domain variants (see Figure 2). 

Moreover, the flat QSAR hypersurface should be complemented with catastrophe analysis to 

determine the specific structural domains for optimum interactions (see Figure 3) and for the 

associated molecular structure design of NNRT inhibitors.  

Because the catastrophe-QSAR approach was found to successfully identify the molecular 

compounds with the most anti-HIV-1 potency as predicted by other 3D-QSAR methods, these results 

encourage further applications and implementations of Thom’s non-linear correlations with the goal of 

analytically modeling complex dynamic ligand-receptor interactions, especially on the molecular 

fragment or structural alert level [41], on a chemometric basis. 
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Appendix 

A1. More on Catastrophe Theory Background  

The foreground of the Catastrophe Theory lies on expressing the Taylor series associated to a 
smooth function  xc, ,    mk xxccxc ,...,,,...,, 11 , say in its origin   0, xc  under the form 

taylxcjxc s  ),(),(   (A.1)

viewed as the summation of the so called s-jet or s-current 





s

r

rrs xD
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xcfj
0

0!

1
),(   (A.2)

and of its tail generically called here as “tayl”. However, in modeling the natural phenomena, unlike 

the regular (like planets orbits) or continuous ones (with small perturbations included) where the 

truncation to the s-jet works fine, many of registered events display sudden (or “catastrophic”) 

characters, like earthquakes, population growth, or cancer spreading, thus highly requiring for 

counting of the Taylor tail as well; such need was elegantly resumed by C. E. Zeeman, one of the 

pioneers of Catastrophe Theory [58], by “allowing the tail of the Taylor series to wag the dog”. When 

the tayl part is becoming important it shapes as the quadratic type dependency on the control × behavior 

joint space where the original function was defined: 

 xcgtayl ,2  (A.3)

This is due to the celebrated Morse’s bifurcation lemma [59] around the so called critical points of 

the original function, see Equation (3) of the main text, where it actually equivalents the original 

function with the family of function 

       22
11 ...,,...,,~, mss ggxcgxcgxc    (A.4)

Here s-stays also the co-rank of the Hessian of  xc,  in the point   0, xc . The main question 

that arises hereby is to try to identify the so called local types of function in a k-parametric (control 

space) family of functions, or, even more, being given a function to identify in its neighborhood the 

family it belongs to. The solution to this problem was furnished by Thom [1] and then by Arnold [60], 

by using the powerful concepts of co-dimension and structural tranversality, such that the resulted 

classification theorem formulates the seven elementary so called catastrophe function of Table 2 as 

governing all the natural phenomena where the co-dimension is no greater than 4 (four). To better 

understand that this is indeed covering quite general plethora of natural dynamic systems (with 

complicated local/turning/singular points modeling sudden changes), enough recalling the heuristic 

example of the co-dimension for England-Scotland frontier, for instance, that is always equal to 1 

(one) no mater one represents the frontier as a line (the road along it), as bidimensional (the road 

through it on the Earth), as tridimensional (the road through it by plain), or as 4-D (in relativistic 

vision when the space-time cone is considered as well along it) [61]. It is this co-dimension that 

controls so powerfully the reduction of all possible power expansions of smooth functions to those 

seven presented on  

Table 2; there, one sees the co-dimension number is always equal with the number of parameters from 
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the control space appearing in the Thom polynomials; they, in fact, represent families of functions, i.e., 

controlling large classes of functions that drive open systems in similar (local) ways. In taxonomical 

(or algebraically) terms, it is said that although not all functions are typical (or elementary) their 

families are typical as families; In analytically terms, as all minima through origin look the same (there 

are said to be typical, and typical like the Morse minima of generalized parabola 22
1 ... mxx  , 

eventually after re-parameterization) likewise any transverse path through any non-Morse function that 

can be found within a family of finite functions looks the same as all other transverse paths in the 

family (those of Table 2). Even more, the co-rank of those functions (as the co-rank of their Hessian on 

the critical/singular/turning points) fixes also the minimum of variables that function can be reduced 

to; for example, if a function of 2011 variables has a critical point of co-rank equal 1, the actual 

function to be studied is of only 1 variable! This makes the Catastrophe Theory extremely interesting 

for being applied on QSAR studies, where the available structural variables are listed on hundred  

pages [62], while in fact one searches for modeling functions that enter natural classes or family of 

functions with an universal character—as the Thom polynomials are—and therefore aiming to work 

with appropriate functions with considerable lower number of variables/structural descriptors,  

see Table 3.  

A2. Catastrophe Theory Implication on Pearson Correlation  

Since the transformation of the original smooth function into catastrophe one involves the Morse 

parabolic polynomials contribution, see Equation (A.4), one may employ this recipe to consider the 

ordinary QSAR predicted activity, say QSARY , and of its transformation into the Catastrophe-QSAR 

one, say QSARY / , through the Gaussian mapping  

     M
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while referring to the running-indices assumed in Table 1. The form (A.5) with (A.6) recovers the 

original QSAR predicted function/value when all dispersions over all structural variables vanish 
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thus motivating the actual generalization for treating the natural non-zero dispersive phenomena. On 

the other side, for higher dispersive values of structural variables (i.e., when their domains of 

applicability eventually overlap and promote interactions, i.e., the appearance of cross products in 

Tables 2 and 3) it produces the second order development  
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under appropriate transformations  
MjMjMj

XXX
,1,2,2

~~


  . However, one can see that in the 

Catastrophe Theory’s language the first function of the right hand side in (A.8) stays for the 1-jet for 
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the function QSARY , while the hole expression (A.8) having the Hessian co-rank of order 2 is in full 

consistence with the maximum co-rank universal unfolding for the polynomials of Table 2.  

Next, one likes to check for the effect the Gaussian development (aka the catastrophe transformation) 

of (A.5) has on the statistical (Pearson) statistical coefficient respecting the QSAR value 
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For the sake of clarity we will chose only one sign on (A.5), while the result will not depend on it, 

and successively obtain 
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where in the last relation the Cauchy-Schwarz inequality was used: 
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Next, in order to draw results that do not depend either on M-the number of structure variables nor 

on N-the number of chemicals/molecules involved in a custom QSAR study, one assumes dealing with 

the same dispersion of the observed activity as well as for each descriptor (the so called homogeneous 

assumption, NiiA ,1,   ) likely to be valid when dealing with great number of structural 

descriptors; this way, one actually performs the asymptotic limit M  on (A.6) for all Ni ,1  

and recognizes the Poison integral result  
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Accordingly, the inequality (A.10) now reads 

 2
0

2
0

2
/ 12 RNNRR    (A.13)

It may be rearranged upon the second order equation in N-chemicals’ space  

    012 2
/

2
0

2
0   RRNRN  (A.14)

whose universal fulfillment leads with the condition 

1/  R  (A.15)
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Since the result (A.15) was obtained within asymptotic conditions regarding the number of 

structural descriptors and homogeneous dispersion against recorded activity, it can be naturally 

asserted to its minimum as 

0/ 1 RRM   (A.16)

thus heuristically proving the superiority for the catastrophe-QSAR modeling over the fashioned QSAR, 

therefore further motivating the present approach. As numerical illustration of the general prescription 

of inequality (A.16) the present application confirms it by all one-to-one (i.e., catastrophe-QSAR vs. 

simple QSAR) results reported in Tables 5 and 6.  
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